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A theoretical calculation of the effect of isotopic defects on the infrared lattice absorption of ionic crystals 
is presented. The main concern has been to establish the relative strength of the absorption by local vibra
tions in such a system as compared with that of the nonlocal modes. It has been found that, when a local 
mode exists, it may display a vastly enhanced absorption cross section as compared with that of a charged de
fect in a nonpolar host. This effect arises from the fact that the uniform external field interacts directly with 
the zero-wave-vector components of the normal modes of the imperfect crystal. This interaction induces 
transitions into states which are not true eigenstates of the lattice Hamiltonian, and in which there is an ef
fective coupling between band and local modes that results in the scattering and absorption of band-mode 
phonons by the local vibrations. It has been shown that if the local-mode absorption frequency is close to that 
of the pure crystal, a small concentration of impurity is sufficient to shift the main absorption to the local-
mode frequency, as has been observed in the case of Li(H,D) mixtures containing 5% D~ impurity. Further
more, application of the theory to calculating the temperature dependence of the total vibrational absorption 
by the local modes of U centers (H~ or D~ ions substituted into an alkali halide) has shown that, even for 
single defects which produce highly localized vibrations, it is incorrect to regard the local-mode and host-
lattice absorptions as independent. 

1. INTRODUCTION 

THE main part of this paper is concerned with a 
fuller presentation of the theoretical interpreta

tion1 of observations2,3 on the absorption spectra of 
lithium hydride-deuteride (Li,H,D) mixtures, the prin
cipal object of this part of the work being an under
standing of the anomalous shift of the fundamental 
absorption of LiH produced by the addition of ^ 5 % 
LiD. While the details of the full spectra are uncertain 
it has been clearly established that in such mixtures the 
strongest absorption occurs at or near the frequency 
characteristic of pure LiD. 

A theoretical understanding of this result involves 
studying the dynamics of an ionic crystal containing a 
finite concentration of defects and the interaction of its 
normal modes with external radiation. This problem 
does not appear to have been studied previously for a 
three-dimensional lattice, although Maradudin and 
Wallis4 have treated an ionic linear chain containing 
one or two defects. 

To solve the present problem we shall use the more 
recent results of Dawber and Elliott.5,6 While this 
work provides the means of treating isolated defects in 
a real crystal, it is not directly applicable to the present 
problem since these authors were interested in the 

1 D. J. Montgomery and J. R. Hardy, International Conference 
on Lattice Dynamics, Copenhagen, 1963, to be published in Phys. 
Chem. Solids. 

2 W. B. Zimmerman and D. J. Montgomery, Phys. Rev. 120, 
405 (1960). 

3 R. H. Misho, W. B. Zimmerman, and D. J. Montgomery, 
International Symposium on Far Infrared Spectroscopy, Cin
cinnati, Ohio, August, 1962 (unpublished); TID-17203, Abstract 
2947 (unpublished); Nucl. Sci. Abstr. 17, 402 (1963). 

4 R. F. Wallis and A. A. Maradudin, Progr. Theoret. Phys. 
(Kyoto) 24, 1055 (1960). 

6 P. G. Dawber and R. J. Elliott, Proc. Roy. Soc. (London) 
A273, 222 (1963). 

6 P. G. Dawber and R. J. Elliott, Proc. Phys. Soc. (London) 
81? 453 (1963). 

infrared absorption produced by charged defects in 
nonionic host lattices. We can, however, use some of 
their results as a starting point in the present work and 
our notation will be very similar to theirs. 

2. THEORY 

For a perfect crystal the normal modes are plane 
waves, each specified by k its wave vector, and j its 
branch index. In an ionic crystal only the transverse 
optic modes at k=0 will interact with an external 
electromagnetic field. When the crystal contains de
fects the normal modes are no longer plane waves and 
all modes may have k=0 Fourier components and thus 
absorb radiation. Fortunately, as we are concerned 
with an effect which occurs at low defect concentrations, 
we are able to avoid determining the true normal co
ordinates. This is possible because the majority of the 
photons are then absorbed in regions of perfect crystal 
as k = 0 phonons which are quasistationary states of 
the whole system. These phonons then interact with 
the defects and, as we shall show, resonance scattering 
of these phonons by local modes at the T>~ ion sites 
produces the observed shift in the fundamental ab
sorption frequency. The initial absorption still takes 
place in the host lattice, but the phonon produced is a 
virtual phonon and over-all energy conservation is 
maintained by its subsequent conversion to a real 
local-mode phonon.1 

To demonstrate the existence of the local modes we 
apply the results of Ref. 5 to the H~ sublattice, and 
regard the Li+ ions as infinitely heavy. This is a reason
able approximation and very much simplifies the prob
lem as we can then use the results appropriate to a 
monatomic cubic lattice.7 

7 While this approximation may seem too drastic for Li (H,D) 
mixtures, it would obviously be very much better for Na(H,D) 
or any other alkali hydride-deuteride mixture. For any of the 
last salts the error would be negligible. 
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Then the perturbed eigenfrequencies (indexed by / ) 
are determined by the integral equation: 

1+ 
2 ( / ) . 1 

32V k,/co/(k)-co2(/) 
= 0, (1) 

where €=(MH—MD)/MH, and N is the number of 
H~ ions/unit volume. 

Or 

1+eZ dfx=0, (la) 
J u-Z 

3.5coo2 corresponding to the longitudinal optic-mode 

where Z=co2(/) and o>/(k)=/zy(k)=^, and V(/JL) is the 
normalized frequency distribution [i.e., Jl^vijj^dfx^ 1]. 

The neutron-scattering data of Woods et al.% suggest 
that v(ix) can be approximated by two delta functions 
with amplitudes in the ratio 2:1; the first, representing 
the transverse optic (TO) modes, placed at AH=O>O2 

(coo being the TO frequency at k=0) and the second at 

frequency at k=0. 
Equation (la) then has a solution Z=0.6co0

2 corre
sponding to a triply degenerate local mode lying in the 
observed8 gap between the optic and acoustic modes of 
LiH. There is also a second root lying between /u and 
/z2, but this is spurious as the true spectrum has a 
finite density of states in this region and the delta-
function approximation can only be used to derive the 
frequencies of modes lying outside the range of the 
band modes. The resultant Z value is somewhat un
certain, but is nonetheless sufficiently accurate for the 

present work and is not greatly influenced by the use of 
more refined frequency spectra. 

We also have from Ref. 5 an expression for the eigen
vectors Xp(f,l) of the dynamical matrix for the im
perfect crystal: 

(2) 
6 C 7 ^ ( k ) ^ ( k V ( / ) X a ( / , 0 ) 

Na* co/(k)-co2(/) 

The unperturbed eigenvectors are 

x/(k,Z) = <rfi*f(k) (NM)-1^****, 

M=MH, and the branch index j= 1, 2, or 3. I specifies 
a particular unit cell at a position R* relative to the 
defect s i te /-0.9 

Evidently we can write the perturbed eigenvectors 
in terms of the unperturbed eigenvectors thus: 

where 

X ^ ( / ) = - e ( - ) 
jf\mV00*g(/,OV(/) 

co/(k)-a>2(/) 

(3) 

(3a) 

We know that the Hamiltonian of the imperfect 
crystal is given by 

where d(f) and d(f) refer to normal-mode amplitudes 
and their time derivatives. We can now express H in a 
different form if we use Eq. (3). Thus, 

H=H Z Mxa^Xf)Xa^\f%d(f)d(f)+c,f(k)d(f)d(f')2}+iAM^ Xa(f,0)X?(f'fi)d(f)d(f), 
ff'aPkj ff'aP 

where AM=M'-~ M; and if we now quantize and express H in terms of creation and destruction operators a+(f) 
and a(f), we have 

h 
H=~ £ MXafJ(f)xafr*(J') 

4 ff'aPkj 

x(Ceo( / )co( /0] 1 ^ + ( / ) -a ( / ) ]C f f l ( /0 -a+( /0]+ r , ^ / ( k V „ r a ( / ) + a + ( / ) ] C a ( / 0 + a + ( / 0 ] ) 

+ 
AMh 

4 //'. 
E ^(/)^(/')31/2Xaa0)X,(/')0)Ca+(/)-«(/)]Ca(/')-«+(/')]. (4) 

Our concern is with the absorption of radiation at normal incidence by a plate of crystal whose thickness<5Cwave-
length of the photons. For convenience we shall consider a plane-polarized beam; and its interaction with the 
crystal is then given by the anti-Hermitian operator 

/ h V'2 x°(/) 
\2MNJ f a(f 1/2 

(5) 

where Xo(/)=£/3yX0aO'(/), the a axis being chosen parallel to the direction of polarization. From the form of 
Eq. (5) it is evident that He operating on any given eigenstate of H produces a superposition of such eigenstates, 
which is not itself an eigenstate of H. 

8 A. D. B. Woods, B. N. Brockhouse, M. Sakomoto, and R. N. Sinclair, Inelastic Scattering of Neutrons in Solids and Liquids 
(International Atomic Energy Agency, Vienna, 1961), p. 487. 

9 Note the minus sign on the right-hand side of Eq. (2) which was omitted from the corresponding Eq. (3.8) of Ref. 5. 
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The normal approach in these circumstances is to use first-order perturbation theory to derive the absorption 
coefficient K(O)). 

This leads to the result 

«(«)«ECx°(/)?8C(»-«(/))]. (6) 
/ 

But we must remember that three of the indices / refer to local modes of frequency a/; thus, we shall rewrite H 
in the form such that the band and local-mode parts are explicitly separated. Also, we confine our attention to 
the k = 0, j=a part of H, Ho. 

We then have 

H0 = h/4£ M x » ( / ) x 0 ( / ' ) ( C ' o ( / ) w ( / ' ) ] 1 / 2 [ a + ( / ) - a ( / ) ] C a ( / ' ) - a + ( / ' ) ] 

— - — — — [ a ( / ) + a n / ) X < > ( / 0 + a + ( / 0 ] + Z ^ W ^ + i ) 
[ > 0 > ( / ' ) ] I / 2 L 

AMX(L,0) 

1+ +hM/2ZZ'x°(L)x°(f) 
L i M x°(L)J 

C«'"(/)]I/2[^+-aJ[>(/)-a+(/)] 

[ a L + a £ + X a ( / ) + a + ( / m , (7) 
[>M/)]1/2 

where the index L= (1,2,3) refers to the local modes wo=a>a(0), and the primes on sums over / exclude the terms 
/ = £ . Since the dominant terms in these sums arise from those in which co(/) = co(//)==c°o, we may write: 

H o « E ' *lx°( / ) | 2 " o ! > + ( / ) a ( / ) + i ] + E M{aL+aL+$+hM/2 Z ' X ° W ( / ) 
/ L Lf 

x [«( /W 1/2 
f AMX(L,0)\ wo2 1 1 

1 + 7—KaL+-aL)(a(f)-a+(f))+—r—(aL++aL)(a(f)+a+(f)) . (8) 

We can write the last term in Eq. (8), which we shall denote by E i VL, a s 

£ 7 L = E ' yL(f)la+(f)+a(f)XaL++aL]-yL'(f)la+(f)-a(f)XaL+-aL], 
L Lf 

or 

L VL=h Z' ^( / )k( / )^+^(/)^]+W(/)[^( / )aL+a(/)aL+], (9) 
L Lf 

where *I7L( / ) = 7 L ( / ) - 7 L ( / ) ; W ( / ) = 7 L ( / ) + 7 L , ( / ) . 

If we now compare Eqs. (5), (7), and (8) we see that the electromagnetic interaction He, defined by the first 
equation, induces transitions between the eigenstates of H0— VL which are also eigenstates of H~ VL> Conse
quently we must use these states when we calculate the matrix elements of He. An alternative way of regarding this 
result is to recognize that VL would, in a classical theory, give rise to a generalized force on the local mode when a 
uniform external field stimulates the k = 0 mode of the whole crystal. Since this action on the local mode produces 
an equal and opposite reaction on the k = 0 mode, it follows that the response of the lattice is correspondingly 
reduced. 

Let us characterize each eigenstate of H by two numbers thus: |n(f),ftL), where the first denotes the number of 
quanta present in a band mode ( / ) and the second the number present in a particular local mode L. Then, for 
simplicity, we shall consider that n(f) = fiL=0 for the ground state. 

Let us consider the following states 11,0), |0,1) and the ground state 10,0) and see how they are changed by the 
perturbation — VL-

Thus 
VL(J) 1L(J)2W 

| l , 0 ) - > M ) = | l , 0 ) + i : - 7 — — | 0 , 1 ) + E - — [ 2 , l > , (10a) 
L 0)' — <a(j) L 0) +Cx)(f) 

ICO- IBMWS-^IMH-S mXfWU) , dob) 
L « '+«( / ) * 2"M/)[>'+C0(/)] 

| 0 , 1 > - ^ | 0 , 1 > - Z — — \A), (10c) 
L [ « ' - « ( / ) ] 

whex*e we have included only those terms which influence the absorption coefficient. 
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For a finite defect concentration c we can generalize Eqs. (10) by summing the perturbation corrections in Eqs. 
(10a) and (10b) over all the defects, provided that c is small enough to allow us to neglect inter defect interactions. 
In this limit we must calculate all quantities correct to first order in c. This is the reason for including the final 
term in Eq. (10b) which, although it is of higher order for a single defect, produces effects of order c in an assembly.10 

We can now calculate the absorption coefficient K(CO) defined by 

K(CO)= (wy—CO») I {i\He\j)\2d[o)~ («/—«<)] 

using the corrected states | i) and \j) defined by Eqs. (10), except that we must normalize \A) and | B) everywhere. 
Thus, if 

(A\A){B\B)=X=I+J:^ , u ; _ + s , . _ , (ID 

K(CO) = Z 

Li [> ' -C0( / ) ] 2 Li [> '+<,( / ) ]* 

» ( / ) \ 1 / 2 / VL( vdf) , «(/) [ „ „ _ M / ) V 7 ^'(/) 
co(/)Xl " ' T<'" ' A «' / W-w( / ) «'+«(/)/ 

, ^ vdfhL'(f)xVW , ̂  2x»(/)1Ii(/)
2|2 sn 

+ £ — r ^ - ; — ^ ^ + Z „ ,. I C«-o(/)] 

+ S ] x ° W - ( ' " " + — )( «(«-«'), (12) 
Li I \«'-«(/) u'+w(f)/\a(J)X/ J 

where Ml(f) is the energy difference between the per
turbed states 14) and | B). Thus, 

0 ( / ) = (!/«) ( £ * - £ * ) 

=«(/)-E -
is W 

VL'(f)2 VL(fY 

.«'-«(/) «'+«(/) • ) • 

(13) 

where E A and Eg are the corrected energies of states 
14 > and |J5>. 

Here and elsewhere the sums over i refer to summa
tions over all defects and, in Eq. (11) we retain only 
those terms up to order c. 

If we now use Eq. (12) to evaluate J^K^da) we 
find that 

«(^)=Z'lx0(/)l2+i:ix0(i:)l2-2E 
X°(f)x°(L) 

fL.iXla'u(f)JI* 

X [ W ( / ) - ^ ( / ) ] S [ W - f i ( / ) ] (14) 

correct to first order in c. 
Since the integrated absorption determines the dif

ference between the static and high-frequency dielectric 
constants and this difference is unaltered by the pres
ence of isotopic defects, it follows that Jo^K^dw^l 
for the imperfect as well as the perfect crystal. I t is 
not obvious from Eq. (14) that this constraint is satis
fied and we must reexamine the derivation of Eq. (12) 
for K(CO) from Eq. (5) which defines the photon-phonon 
coupling He to verify this point. 

When we formed the matrix element (A\He\B) 

10 For a finite concentration of defects, Eq. (10c) is not derived 
directly by perturbation theory, but by first correcting the states 
10,1) and then orthogonalizing the states |1,0) to the states so 
corrected. 

during the derivation of Eq. (12), in calculating the 
terms of zero order in c, we tacitly assumed that JHT|̂ 4) 
= Kl(f)\A) and that (-H)|J5)=0, whereas in actual 
fact # - E w VL\A) = EA\A) and -{H-^Li VL)\B) 
= —EB\B). Thus we must add to the zero-order terms 
a contribution of 

VLHe 

(A\Z \B), 

LiU(f)X^ 

which produces a change in K(O>), AK(CO) given by 

, N _ x°(/)x°(i) 
A/c(w) = 2 £ • 

fLiX[u'u(f)JI* 
X&z'CO-rjLCOlSCco-OC/")], (15) 

which when integrated will cancel the final term in 
Eq. (14). 

Thus, 

/•OO 

/ CK(co)+A,(a))]Jco = E ' | X ° ( / ) | 2 + E | x o a ) | 2 . 
Jo f Li 

However, since we know that 2c(/,0 = Y.k/ Xky(/)xy(k>0> 
if we now multiply both sides of this equation by Mi> 
then sum over both / and / and finally square each side, 
we find that 

Z'lx°(/)|H-£lx°OT=l, 
/ Li 

which shows that the integrated absorption is indeed 
unchanged. 

Our present results have been derived for a crystal 
at absolute zero, but it is also possible to demonstrate: 
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that they are unchanged in n(f) and nL7^0 in the 
ground state. 

In subsequent discussions we shall replace o>(/) by 
co0, the frequency of the k = 0 mode of the host crystal. 

We can do this because the sum ] L / | X ° ( / ) 1 2 is 
dominated by modes for which CO(/)«OJ0 and this sum 
is a common factor in all the terms of Eqs. (12) and 
(15). In this way we can obtain the integrated band-
mode absorption correctly, but it is also evident that 
XVI X°(/) 12 is not strictly oc d[co (f) —coo]; consequently 
this absorption is spread over a finite range of 
frequencies. 

3. APPLICATION TO Li(H,D) MIXTURES 

We have already seen that a D~~ ion substituted in 
LiH produces a triply degenerate local mode for which 
a/2^0.6wo2 and we can now use Eq. (12) to derive the 
relative integrated absorption at co = o/ and o) = Q(f), 
where S ( / ) is given by Eq. (13) with <a(f) =a>0. Thus the 
band-mode absorption will be of finite width but 
strongly peaked at o> = n ( / ) . I t will be quite sufficient 
to derive TJL and V\L [which now refer to the values 
appropriate to o>(/) = o>0] from the same approximations 
as those used to calculate a/ since these are such that 
they give lower limits to rjL and TJL. 

Moreover as VL/ (OOO+^O^VL/ (^Q—O)') in this par
ticular case, we can neglect the terms involving rjL 

altogether. We then find that for a concentration of 
only 5 % of D~ ions the integrated local-mode absorp
tion is nine times that of the band modes and that 
5 ( / ) = 1.35co0. 

This proves conclusively that the principal minimum 
in the transmission of a thin film of Li(H,D) mixture 
will occur at the D~~ local-mode frequency when the 
D~ concentration is ~ 5 % or more. 

4. tf-CENTER ABSORPTION 

The U center is either an H~ or D~ ion substituted 
for a negative ion in an alkali-halide host crystal. These 
centers produce characteristic absorption spectra due 
to transitions between localized electronic and vibra
tional levels. Our present concern is with the second 
type of absorption which produces infrared absorption 
peaks at frequencies well above the maximum frequency 
of the host lattice. For small concentrations of H~ or 
D~ and at low temperatures there is a single sharp peak 
in each case. 

As the temperature is raised this broadens strongly 
and the peak becomes ill defined. While one expects 
this as a result of anharmonic effects the integrated 
absorption should remain constant for a given number 
of defects. 

Recent work by Smart and Wilkinson11 has estab
lished that this is clearly not so since, the total absorp-

11 C. Smart and G. R. Wilkinson, Proc. Roy. Soc. (London) 
(to be published). 

tion decreases by a factor of ^ 3 between 100 and 
300°K for either H~ or D~ ions in KC1. 

If we regard the U centers as isotopic impurities we 
can use our present theory to make qualitative predic
tions as to the behavior of the integrated local-mode 
absorption using Eq. (12). I t is at once evident tha t 
this calculated absorption is independent of tempera
ture, if we neglect anharmonic effects. If we include 
them then we shall see that they may affect not only 
the width of the local-mode absorption but also its 
total intensity. Before considering this further we must 
make certain modifications of the derivation of Eq. 
(12) since the ions of both sublattices have comparable 
masses. As we are going to be specifically concerned 
with KC1 we shall assume that M+=M-.= M', this 
simplifies the results and their derivation somewhat, 
but is not a necessary assumption. 

As before we need only consider one of the k = 0 
optical modes polarized parallel to the a axis which is 
parallel to the faces of the specimen. If M+=M-y 

o+= — cr_=l/V2 as o+2+0-_2=l, and if we use the 
general form of Eqs. (2) and (3), we have 

X±°(Z)cr±=± 
M\w 

2[W 

o* /MY 

-o/2]W/ 
E x ( Z , 0 ) , (16) 
L 

where the upper and lower signs are to be taken 
together. 

The derivation of Eq. (12) is almost unchanged, but 
we now have two sets of coupling parameters JL± and 
7z,±'. The important difference is that Y L - ' contains a 
factor. 

r AMx(L,0)-
1 + (T_-

MX-°(L) 
= 0 

£cf. Eq. (7)] while JL+ does not. 
If we now set JL-=0 we find that the integrated 

local-mode absorption in Eq. (12) is now given by 

f , w x{L)T 
1= / K(w)d0) = 1 

J L.M. 1 L 

coo+co'/2 COQ—W'/2 l 2 

2(COQ—a/) 2(0)0+0?') 
liT 
«')J 

1+ 
r 3 cooa/ -f 

1+ , (17) 
L 2 (a,0

2-co'2)J 
where 

X0(L) = x+
0(L)-X-°(L). (17a) 

This result is still independent of temperature and 
is also only valid for a true isotopic impurity. In actual 
fact a U center will carry an effective charge12 6* which 
differs from that of the Cl~ ion. A measure of this dif
ference is provided by Ae*=eKci*—^LiH*= (0.8—0.5)e 
(e= I electronic charge]) and we can include this by 
replacing 1 inside the square brackets on the right-hand 

12 B. Szigeti, Proc. Roy. Soc. (London) A204, 51 (1950). 
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side of Eq. (17) by 

L eKCi*x-°(L) J 

However, in the present situation we must also ex
amine the effects of anharmonicity since, even in the 
harmonic approximation, we have found that the total 
photon-absorption cross section of the local mode is 
strongly affected by defect scattering of band-mode 
phonons. Anharmonicity provides additional possibili
ties for processes having the same effect. 

If we consider those anharmonic terms of third order 
in the normal-mode amplitudes then there are two types 
of such terms which matter: 

(a) those involving the product of three-band-mode 
amplitudes, 

(b) those involving the product of one local-mode 
amplitude and two-band-mode amplitudes. 

The terms (a) cause a k = 0 band-mode phonon to split 
into two phonons of equal and opposite k vector while 
the terms (b) make it possible for this pair of phonons 
to be converted into a local-mode phonon. At finite 
temperatures, when phonon occupation numbers are 
nonzero, processes involving phonon annihilation must 
also be considered. A preliminary investigation of this 
effect has been made and will be reported fully else
where. The main conclusion is that one must substract 
from the expression inside the square brackets of Eq. 
(17) a temperature-dependent term which is of the 
correct order to explain the observed temperature de
pendence for the D~ impurity. For the H~ impurity 
this correction is too small, i.e., the calculated change 
in I is only about 25% of that actually observed. Since 
it is found that the correction is strongly dependent on 
[a>f— (coi+a^)] -1 where coi and co2 are the frequencies 
of the two intermediate band-mode phonons; and as 
Smart and Wilkinson's work11 shows that G / /CO 0 =3 .36 
for H " ions against 2.40 for T>~~ ions, it seems that 
virtual processes involving three intermediate phonons 
are likely to be more important for the H~ impurity be
cause in this case [V— (a)i+co2+^3)]""1 will be of the 
same order as [V— (coi+a>2)]

_1 for the local D~ vibra
tions. These processes will occur in a similar way to 
the (a) —> (b) sequence described previously except 
that the coupling will be produced by the corresponding 
fourth-order terms in the anharmonic potential. 

5. DISCUSSION 

The effects we have been discussing are peculiar to 
systems in which the presence of a defect produces local 
vibrations; and to obtain the drastic effects observed 
in Li(H,D) mixtures, one needs both the presence of a 
local mode and an unperturbed frequency spectrum 
which is such that a/ is close to co0. This explains why 
coo varies smoothly with concentration of Li7 in Li6,7F 
mixed crystals,3 since LiF has no gap in its frequency 
spectrum.13 Also, even if a gap were present, the mass 
difference might well be too small to produce local 
modes. 

In the case of an H~ ion substituted into pure LiD, 
it is possible that no local mode is produced,14 but 
should one be present, it can only appear at a frequency 
greater than the maximum lattice frequency. Thus 
(a/—coo)— coo and the scattering of band modes by the 
defect is drastically reduced as compared with that 
produced by a D~ ion in pure LiH. Consequently the 
anomalous shift of the fundamental absorption is only 
present for Li(H,D) mixtures. 

One can suggest further tests of the present theory of 
isotopic mixtures: 

(i) Measurements should be made on Li(H,D) mix
tures containing < 5 % D~ designed to follow the shift 
of the fundamental absorption as a function of D~ 
concentration. 

(ii) I t is highly desirable to confirm that other 
alkali (H,D) mixtures display similar anomalous be
havior, as one would expect from the present theory. 

(iii) All possible alkali-halide mixed crystals should 
be subjected to similar measurements in the hope that, 
whenever the pure host has a gap in its frequency spec
trum, the replacement of a few percent of the lighter 
of the two host ions by heavier impurity ions will pro
duce an anomalously large shift in the principal lattice 
absorption.. 
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function. This prediction is less reliable than that for the D~~ ion 
in LiH since the calculated value of a/ can be brought into the 
range of band modes by a small variation of the position of the 
upper delta function. One can achieve the same result for the D~ 
impurity only by a large, completely implausible movement of 
the lower delta function. 


